

Phase Measurement System for Inter-Spacecraft Laser Metrology

B. Ware, <u>W.M. Folkner</u>, D. Shaddock, P.G. Halverson, I. Harris, T. Rogstad

Jet Propulsion Laboratory California Institute of Technology

29 June 2006

- The phase measurement system is being developed in parallel with a separate optical system development at U. Colorado/Ball Aerospace
 - See paper by M. Stephens, session A8P3

GRACE Mission

- Change in distance between spacecraft in low Earth orbit monitored to estimate underlying mass distribution
- Measurement accuracy (~ 100 nm) limited by
 - (1) thermal noise
 - (2) clock-like noise
 - includes frequency (in)stability of microwave signal source
- Gravity field accuracy also limited by
 - (3) non-gravitational forces on spacecraft
- ESTC 29 Jun 06 measured by accelerometer

Range Change From Gravity

- Earth gravity features affect lead/trailing spacecraft at different times
 - Lead spacecraft encounters feature first
 - e.g. lead spacecraft speeds up towards mountain
 - Range to trailing spacecraft increases
 - Any unknown non-gravity forces acting on spacecraft also affect range
 - Calibrated out using accelerometer or drag-free sensor system

Goals for Next Gravity Mission

- Goal is to measure gravity changes with more precision over much smaller spatial scales
- Aim for x1000 improvement over GRACE in measurement system accuracy

Ranging Measurement

- Range is inferred from measurement of round-trip light time
 - Pulsed is preferred when Transmitter/Receiver is on ground
 - High power concentration to overcome 1/r⁴ loss
 - Continuous preferred when 'mirror' is active
 - Better SNR; only 1/r² losses
 - Higher precision from higher intrinsic frequency

Dual One-Way versus Transceiver

- GRACE uses independent transmission/detection at each spacecraft
 - Combination of data on ground determines range
- Laser metrology uses detection/locking-/transmission at one spacecraft
 - Otherwise laser frequencies would be too far apart
 - Fast phase meter needed for locking function

Interferometric Ranging Transceiver

- Prototype optical benches being developed to transmit laser signals between spacecraft to measure range to <1 nm.
 - See paper by M. Stephens et al., this conference
- Range between freely-floating masses in drag-free spacecraft
 - See New Millennium Program ST7 paper

Other Applications

- LISA is based on a triangular interferometer, each arm similar to the IRT for GRACE-follow-on
 - LISA requires higher measurement accuracy, higher fringe frequency, lower frequency-rate
- SIM uses modulation interferometer to measures distance between reference corner cubes
 - More sensitive to cyclic errors
 - Can use lower signal frequency

Laser Measurement Requirements

- Why new phasemeter development?
 - Laser signals have much higher carrier frequency
 - So Doppler shifts cause much higher signal frequency shifts and frequency rates
 - Lasers have much higher frequency variation
 - Compared with microwave signal locked to USO
 - Phasemeter must track with higher loop bandwidths
 - Higher accuracy requires better use of signal-to-noise ratio
 - Sampling must be 4-bit or greater
 - (GRACE uses 1-bit samples)
 - Lasers need to lock to other laser signals
 - Phasemeter output needed at >10kHz
 - Phasemeter should autonomously search for reference signal and lock
- Phasemeter must be insensitive to laser power fluctuations

Phase Measurement

- Local-model correlation method for phase measurement
 - Input signal (voltage) is multiplied (at each time)by;
 - Model of expected signal
 - Model of expected signal shifted by 90°
 - Cross-multiplications summed over integration time to get I, Q
 - Phase measurement is given by Tan⁻¹(I/Q)

Breadboard Phasemeter Development

- Commercially available cards used for rapid development
- Labview-programmable FPGA card identified for ease of testing different algorithm implementations
- Fast analog-to-digital conversion cards available allow working over full expected range of Doppler variations
- A/D and FPGA run at 40 MHz
- Output available at 20 kHz for locking laser in 'slave' spacecraft
- Slower rate output used for highest precision
- Provides real time display and data logging

Breadboard Phasemeter Hardware

- Commercial rack-mount analog-to-digital converter
- PCXI cpu running real-time labview
 - Labview-programmable FPGA card
 - Upgraded in last 6 months to accommodate up to 4 channels
- Host PC tower for monitor and data logging (not shown)

Breadboard Phasemeter Architecture

ESTC 29 Jun 06

Accuracy & Dynamic Range

- Digitally tested dynamic range requirement.
 - Digitally generated 3 independent, laser-like noise sources such that,

Phase 0 + Phase 1 - Phase 2 = 0

Anti-Aliasing

• Phasemeter designed to have aliasing suppression of 10⁷ in the signal band.

Amplitude Sensitivity

- Phase measurement should be insensitive to amplitude changes
- Technique for adding random noise to most significant bit developed to limit sensitivity to amplitude changes
 - Also allows operation at signal frequencies which are integer-ratios of sampling frequency
 - At cost of slight, acceptable increase in noise

Burst output Bartlett ON/OFF

Sampling Jitter

• Jitter in the sampling time δt produces a phase error

$$\phi = \delta t \times f_{het}$$

• For 1 μ cycle/ $\sqrt{}$ Hz phase noise requirement, and a 20 MHz heterodyne frequency.

$$\delta t < 0.5 \text{ x } 10^{-13} \text{ s/}\sqrt{\text{Hz}}$$

- Jitter in the sampling time arising from clock is already removed.
- Remaining sampling jitter is the fluctuating latency of the ADC.

Calibrate jitter by processing the phase of a known signal at a different frequency using the same ADC.

Sampling Jitter Calibration

- A/D sampling jitter can be calibrated by adding signal locked to phasemeter reference clock to input of sampler
- Technique has been tested to show suppression of jitter noise to 10⁻⁶ cycle/sqrt(Hz)

Laser Locking Test

- The fast-phasemeter has been used to phase-lock two commercial NPRO lasers Maintains phase-lock indefinitely (weeks).
- Used science phasemeter to evaluate locking performance.

Two lasers locked using fast phasemeter

- Locked to < 1 μcycle/sqrt(Hz) above 100 mHz
- Locked to < 10 μcycle /sqrt(Hz) at 1 mHz
- Low frequency performance limited by ADC jitter.

Phasemeter in IRT Test Bed

- The PC phasemeter has been installed and tested in the IRT breadboard test bed at Ball Aerospace
- PC phasemeter works well with real optical signals
- The PC phasemeter has better performance than GRACE electronics previously used
 - Has much more flexible interface
 - Can be rapidly modifed if necessary
 - E.g. a ramp function to simulate orbit dynamics was implemented with a simple software update

Figures from U. Colorado/BATC ITR Interim Review June 2006

Phasemeter Path to Flight

- Algorithms fully tested over required dynamic ranges
- Algorithms being ported to all integer arithmetic on FPGA
 - Compatible with flight FPGA components
- Suitable radiation hardened ADCs identified
 - e.g. Maxwell 9042:15 bit,41 MS/s.

Summary

- Breadboard phasemeter works very well
 - Phasemeter has passed all digital and electronic tests
 - Critical requirements have been demonstrated
 - Tests of the phasemeter in a optical/electronic system are underway
- Phasemeter has a clear path to flight
 - All components are off the shelf items
 - Can be used for many applications